Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
J Infect ; 87(2): 136-143, 2023 08.
Article in English | MEDLINE | ID: covidwho-2328107

ABSTRACT

OBJECTIVE: Assess real-world effectiveness of vaccines against COVID-19. METHODS: A test-negative study was conducted in January-May 2022 during an Omicron BA.2 wave in Hong Kong. COVID-19 was identified by RT-PCR. 1-1 case-control matching was based on propensity score with vaccine effectiveness adjusted for confounders. RESULTS: Altogether, 1781 cases and 1737 controls aged 3-105 years were analysed. The mean lag time from the last dose of vaccination to testing for SARS-CoV-2 was 133.9 (SD: 84.4) days. Two doses of either vaccine within 180 days offered a low effectiveness against COVID-19 of all severity combined (VEadj [95% CI] for BNT162b2: 27.0% [4.2-44.5], CoronaVac: 22.9% [1.3-39.7]), and further decreased after 180 days. Two doses of CoronaVac were poorly protective 39.5% [4.9-62.5] against severe diseases for age ≥ 60 years, but the effectiveness increased substantially after the third dose (79.1% [25.7-96.7]). Two doses of BNT162b2 protected age ≥ 60 years against severe diseases (79.3% [47.2, 93.9]); however, the uptake was not high enough to assess three doses. CONCLUSIONS: The current real-world analysis indicates a high vaccine effectiveness of three doses of inactivated virus (CoronaVac) vaccines against Omicron variant, whereas the effectiveness of two doses is suboptimal.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , BNT162 Vaccine , COVID-19/prevention & control , RNA, Messenger , Hong Kong/epidemiology , SARS-CoV-2/genetics , Vaccines, Inactivated
2.
Int J Health Policy Manag ; 2021 Jan 18.
Article in English | MEDLINE | ID: covidwho-2288074

ABSTRACT

BACKGROUND: The prevalence of coronavirus disease 2019 (COVID-19) vaccination is very critical in controlling COVID-19. This study mainly aimed to (1) investigate behavioral intentions of COVID-19 vaccination under various specific scenarios, and (2) associated factors of the afore-mentioned vaccination intentions. METHODS: A random anonymous telephone survey interviewed 450 Chinese adults from September 16-30, 2020 in Hong Kong, China. Nine scenarios of behavioral intentions of COVID-19 vaccinations were measured combining effectiveness (80% versus 50%), safety (rare versus common mild side effect), and cost (free versus HK$ 500). RESULTS: The prevalence of behavioral intentions of COVID-19 vaccination under the 9 specific scenarios was very low and varied greatly (4.2% to 38.0%). The prospective countries of manufacture also influenced vaccination intention (eg, Japan: 55.8% vs China: 31.1%). Only 13.1% intended to take up COVID-19 vaccination at the soonest upon its availability. The attributes of effectiveness and side effect influenced vaccination intention most. Positively associated factors of behavioral intentions of COVID-19 vaccination included trust/satisfaction toward the government, exposure to positive social media information about COVID-19 vaccines, descriptive norms, perceived impact on the pandemic, perceived duration of protectiveness, and life satisfaction. CONCLUSION: Intention of COVID-19 vaccination was low in the Hong Kong general population, especially among younger people, females, and single people. Health promotion is warranted to enhance the intention. The significant factors identified in this study may be considered when designing such health promotion. Future research is required to confirm the findings in other countries. Such studies should pay attention to the specific context of cost, safety, and effectiveness, which would lead to different responses in the level of behavioral intention of COVID-19 vaccination (BICV).

3.
Microbiol Spectr ; : e0326022, 2022 Nov 07.
Article in English | MEDLINE | ID: covidwho-2287509

ABSTRACT

The continuous and rapid surge of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with high transmissibility and evading neutralization is alarming, necessitating expeditious detection of the variants concerned. Here, we report the development of rapid SARS-CoV-2 variants enzymatic detection (SAVED) based on CRISPR-Cas12a targeting of previously crucial variants, including Alpha, Beta, Gamma, Delta, Lambda, Mu, Kappa, and currently circulating variant of concern (VOC) Omicron and its subvariants BA.1, BA.2, BA.3, BA.4, and BA.5. SAVED is inexpensive (US$3.23 per reaction) and instrument-free. SAVED results can be read out by fluorescence reader and tube visualization under UV/blue light, and it is stable for 1 h, enabling high-throughput screening and point-of-care testing. We validated SAVED performance on clinical samples with 100% specificity in all samples and 100% sensitivity for the current pandemic Omicron variant samples having a threshold cycle (CT) value of ≤34.9. We utilized chimeric CRISPR RNA (crRNA) and short crRNA (15-nucleotide [nt] to 17-nt spacer) to achieve single nucleotide polymorphism (SNP) genotyping, which is necessary for variant differentiation and is a challenge to accomplish using CRISPR-Cas12a technology. We propose a scheme that can be used for discriminating variants effortlessly and allows for modifications to incorporate newer upcoming variants as the mutation site of these variants may reappear in future variants. IMPORTANCE Rapid differentiation and detection tests that can directly identify SARS-CoV-2 variants must be developed in order to meet the demands of public health or clinical decisions. This will allow for the prompt treatment or isolation of infected people and the implementation of various quarantine measures for those exposed. We report the development of the rapid SARS-CoV-2 variants enzymatic detection (SAVED) method based on CRISPR-Cas12a that targets previously significant variants like Alpha, Beta, Gamma, Delta, Lambda, Mu, and Kappa as well as the VOC Omicron and its subvariants BA.1, BA.2, BA.3, BA.4, and BA.5 that are currently circulating. SAVED uses no sophisticated instruments and is reasonably priced ($3.23 per reaction). As the mutation location of these variations may reoccur in subsequent variants, we offer a system that can be applied for variant discrimination with ease and allows for adjustments to integrate newer incoming variants.

4.
Pathogens ; 11(4)2022 Mar 24.
Article in English | MEDLINE | ID: covidwho-2254253

ABSTRACT

BACKGROUND: SARS-CoV-2 enters the body through inhalation or self-inoculation to mucosal surfaces. The kinetics of the ocular and nasal mucosal-specific-immunoglobulin A(IgA) responses remain under-studied. METHODS: Conjunctival fluid (CF, n = 140) and nasal epithelial lining fluid (NELF, n = 424) obtained by paper strips and plasma (n = 153) were collected longitudinally from SARS-CoV-2 paediatric (n = 34) and adult (n = 47) patients. The SARS-CoV-2 spike protein 1(S1)-specific mucosal antibody levels in COVID-19 patients, from hospital admission to six months post-diagnosis, were assessed. RESULTS: The mucosal antibody was IgA-predominant. In the NELF of asymptomatic paediatric patients, S1-specific IgA was induced as early as the first four days post-diagnosis. Their plasma S1-specific IgG levels were higher than in symptomatic patients in the second week after diagnosis. The IgA and IgG levels correlated positively with the surrogate neutralization readout. The detectable NELF "receptor-blocking" S1-specific IgA in the first week after diagnosis correlated with a rapid decline in viral load. CONCLUSIONS: Early and intense nasal S1-specific IgA levels link to a rapid decrease in viral load. Our results provide insights into the role of mucosal immunity in SARS-CoV-2 exposure and protection. There may be a role of NELF IgA in the screening and diagnosis of SARS-CoV-2 infection.

5.
Front Immunol ; 14: 1127401, 2023.
Article in English | MEDLINE | ID: covidwho-2269373

ABSTRACT

Background: Immunity acquired from natural SARS-CoV-2 infection and vaccine wanes overtime. This longitudinal prospective study compared the effect of a booster vaccine (BNT162b2) in inducing the mucosal (nasal) and serological antibody between Covid-19 recovered patients and healthy unexposed subjects with two dose of mRNA vaccine (vaccine-only group). Method: Eleven recovered patients and eleven gender-and-age matched unexposed subjects who had mRNA vaccines were recruited. The SARS-CoV-2 spike 1 (S1) protein specific IgA, IgG and the ACE2 binding inhibition to the ancestral SARS-CoV-2 and omicron (BA.1) variant receptor binding domain were measured in their nasal epithelial lining fluid and plasma. Result: In the recovered group, the booster expanded the nasal IgA dominancy inherited from natural infection to IgA and IgG. They also had a higher S1-specific nasal and plasma IgA and IgG levels with a better inhibition against the omicron BA.1 variant and ancestral SARS-CoV-2 when compared with vaccine-only subjects. The nasal S1-specific IgA induced by natural infection lasted longer than those induced by vaccines while the plasma antibodies of both groups maintained at a high level for at least 21 weeks after booster. Conclusion: The booster benefited all subjects to obtain neutralizing antibody (NAb) against omicron BA.1 variant in plasma while only the Covid-19 recovered subjects had an extra enrichment in nasal NAb against omicron BA.1 variant.


Subject(s)
BNT162 Vaccine , COVID-19 , Humans , Antibodies, Neutralizing , Antibody Formation , BNT162 Vaccine/immunology , COVID-19/prevention & control , Immunoglobulin A , Immunoglobulin G , mRNA Vaccines/immunology , Prospective Studies , SARS-CoV-2 , Immunization, Secondary , Immunity, Mucosal
6.
Frontiers in immunology ; 14, 2023.
Article in English | Europe PMC | ID: covidwho-2242794

ABSTRACT

Background Immunity acquired from natural SARS-CoV-2 infection and vaccine wanes overtime. This longitudinal prospective study compared the effect of a booster vaccine (BNT162b2) in inducing the mucosal (nasal) and serological antibody between Covid-19 recovered patients and healthy unexposed subjects with two dose of mRNA vaccine (vaccine-only group). Method Eleven recovered patients and eleven gender-and-age matched unexposed subjects who had mRNA vaccines were recruited. The SARS-CoV-2 spike 1 (S1) protein specific IgA, IgG and the ACE2 binding inhibition to the ancestral SARS-CoV-2 and omicron (BA.1) variant receptor binding domain were measured in their nasal epithelial lining fluid and plasma. Result In the recovered group, the booster expanded the nasal IgA dominancy inherited from natural infection to IgA and IgG. They also had a higher S1-specific nasal and plasma IgA and IgG levels with a better inhibition against the omicron BA.1 variant and ancestral SARS-CoV-2 when compared with vaccine-only subjects. The nasal S1-specific IgA induced by natural infection lasted longer than those induced by vaccines while the plasma antibodies of both groups maintained at a high level for at least 21 weeks after booster. Conclusion The booster benefited all subjects to obtain neutralizing antibody (NAb) against omicron BA.1 variant in plasma while only the Covid-19 recovered subjects had an extra enrichment in nasal NAb against omicron BA.1 variant.

7.
JAMA Netw Open ; 5(12): e2247723, 2022 12 01.
Article in English | MEDLINE | ID: covidwho-2172230

ABSTRACT

Importance: Knowledge of the longevity and breath of immune response to coronavirus infection is crucial for the development of next-generation vaccines to control the COVID-19 pandemic. Objectives: To determine the profile of SARS-CoV-2 antibodies among persons infected with the closely related virus, SARS-CoV-1, in 2003 (SARS03 survivors) and to characterize their antibody response soon after the first and second doses of COVID-19 vaccines. Design, Setting, and Participants: This prospective cohort study examined SARS-CoV-2 antibodies among SARS03 survivors compared with sex- and age-matched infection-naive controls. Participants received the COVID-19 vaccines between March 1 and September 30, 2021. Interventions: One of the 2 COVID-19 vaccines (inactivated [CoronaVac] or messenger RNA [BNT162b2]) available in Hong Kong. Two doses were given according to the recommended schedule. The vaccine type administered was known to both participants and observers. Main Outcomes and Measures: SARS-CoV-2 antibodies were measured prevaccination, 7 days after the first dose, and 14 days after the second dose. Results: Eighteen SARS03 adult survivors (15 women and 3 men; median age, 46.5 [IQR, 40.0-54.3] years) underwent prevaccination serologic examination. The vast majority retained a detectable level of antibodies that cross-reacted with SARS-CoV-2 (16 of 18 [88.9%] with nucleocapsid protein antibodies and 17 of 18 [94.4%] with receptor-binding domain of spike protein antibodies); a substantial proportion (11 of 18 [61.1%]) had detectable cross-neutralizing antibodies. Twelve SARS03 adult survivors (10 women and 2 men) underwent postvaccination serologic examination. At 7 days after the first dose of vaccine, SARS03 survivors mounted significantly higher levels of neutralizing antibodies compared with controls (median inhibition: 89.5% [IQR, 77.1%-93.7%] vs 13.9% [IQR, 11.8%-16.1%] for BNT162b2; 64.9% [IQR, 60.8%-69.5%] vs 13.4% [IQR, 9.5%-16.8%] for CoronaVac; P < .001 for both). At 14 days after the second dose, SARS03 survivors generated a broader antibody response with significantly higher levels of neutralizing antibodies against variants of concern compared with controls (eg, median inhibition against Omicron variant, 52.1% [IQR, 35.8%-66.0%] vs 14.7% [IQR, 2.5%-20.7%]; P < .001). Conclusions and Relevance: The findings of this prospective cohort study suggest that infection with SARS-CoV-1 was associated with detectable levels of antibodies that cross-react and cross-neutralize SARS-CoV-2, which belongs to a distinct clade under the same subgenus Sarbecovirus. These findings support the development of broadly protective vaccines to cover sarbecoviruses that caused 2 devastating zoonotic outbreaks in humans over the last 2 decades.


Subject(s)
COVID-19 Vaccines , COVID-19 , Male , Humans , Adult , Female , Middle Aged , BNT162 Vaccine , Pandemics , Prospective Studies , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral
8.
Nat Commun ; 13(1): 6806, 2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2117247

ABSTRACT

Our knowledge of the role of the gut microbiome in acute coronavirus disease 2019 (COVID-19) and post-acute COVID-19 is rapidly increasing, whereas little is known regarding the contribution of multi-kingdom microbiota and host-microbial interactions to COVID-19 severity and consequences. Herein, we perform an integrated analysis using 296 fecal metagenomes, 79 fecal metabolomics, viral load in 1378 respiratory tract samples, and clinical features of 133 COVID-19 patients prospectively followed for up to 6 months. Metagenomic-based clustering identifies two robust ecological clusters (hereafter referred to as Clusters 1 and 2), of which Cluster 1 is significantly associated with severe COVID-19 and the development of post-acute COVID-19 syndrome. Significant differences between clusters could be explained by both multi-kingdom ecological drivers (bacteria, fungi, and viruses) and host factors with a good predictive value and an area under the curve (AUC) of 0.98. A model combining host and microbial factors could predict the duration of respiratory viral shedding with 82.1% accuracy (error ± 3 days). These results highlight the potential utility of host phenotype and multi-kingdom microbiota profiling as a prognostic tool for patients with COVID-19.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Metagenomics/methods , Feces/microbiology , Post-Acute COVID-19 Syndrome
9.
Microbiol Spectr ; : e0219622, 2022 Nov 09.
Article in English | MEDLINE | ID: covidwho-2108228

ABSTRACT

Numerous studies have reported dysbiosis in the naso- and/or oro-pharyngeal microbiota of COVID-19 patients compared with healthy individuals; however, only a few small-scale studies have also included a disease control group. In this study, we characterized and compared the bacterial communities of pooled nasopharyngeal and throat swabs from hospitalized COVID-19 patients (n = 76), hospitalized non-COVID-19 patients with respiratory symptoms or related illnesses (n = 69), and local community controls (n = 76) using 16S rRNA gene V3-V4 amplicon sequencing. None of the subjects received antimicrobial therapy within 2 weeks prior to sample collection. Both COVID-19 and non-COVID-19 hospitalized patients differed in the composition, alpha and beta diversity, and metabolic potential of the naso-oropharyngeal microbiota compared with local controls. However, the microbial communities in the two hospitalized patient groups did not differ significantly from each other. Differential abundance analysis revealed the enrichment of nine bacterial genera in the COVID-19 patients compared with local controls; however, six of them were also enriched in the non-COVID-19 patients. Bacterial genera uniquely enriched in the COVID-19 patients included Alloprevotella and Solobacterium. In contrast, Mogibacterium and Lactococcus were dramatically decreased in COVID-19 patients only. Association analysis revealed that Alloprevotella in COVID-19 patients was positively correlated with the level of the inflammation biomarker C-reactive protein. Our findings reveal a limited impact of SARS-CoV-2 on the naso-oropharyngeal microbiota in hospitalized patients and suggest that Alloprevotella and Solobacterium are more specific biomarkers for COVID-19 detection. IMPORTANCE Our results showed that while both COVID-19 and non-COVID-19 hospitalized patients differed in the composition, alpha and beta diversity, and metabolic potential of the naso-oropharyngeal microbiota compared with local controls, the microbial communities in the two hospitalized patient groups did not differ significantly from each other, indicating a limited impact of SARS-CoV-2 on the naso-oropharyngeal microbiota in hospitalized patients. Besides, we identified Alloprevotella and Solobacterium as bacterial genera uniquely enriched in COVID-19 patients, which may serve as more specific biomarkers for COVID-19 detection.

10.
Pathogens ; 11(2)2022 Feb 11.
Article in English | MEDLINE | ID: covidwho-1715596

ABSTRACT

Characterized by the high morbidity and mortality and seasonal surge, the influenza virus (IV) remains a major public health challenge. Oseltamivir is commonly used as a first-line antiviral. As a neuraminidase inhibitor, it attenuates the penetration of viruses through the mucus on the respiratory tract and inhibits the release of virus progeny from infected cells. However, over the years, oseltamivir-resistant strains have been detected in the IV surveillance programs. Therefore, new antivirals that circumvent the resistant strains would be of great importance. In this study, two novel secondary amine derivatives of oseltamivir CUHK326 (6f) and CUHK392 (10i), which bear heteroaryl groups of M2-S31 proton channel inhibitors, were designed, synthesized and subjected to biological evaluation using plaque assay. Influenza A virus (A/Oklahoma/447/2008, H1N1), influenza B viruses (B/HongKong/CUHK33261/2012), an oseltamivir-resistant influenza A virus (A/HongKong/CUHK71923/2009, H1N1) and an oseltamivir-resistant influenza B virus (B/HongKong/CUHK33280/2012) were included in the antiviral effect assessment compared to oseltamivir carboxylate (OC). Both novel compounds significantly reduced the plaque size of seasonal IV A and B, and performed similarly to OC at their corresponding half-maximal inhibitory concentration (IC50). CUHK392 (10i) functioned more effectively than CUHK326 (6f). More importantly, these compounds showed an inhibitory effect on the oseltamivir-resistant strain under 10 nM with selective index (SI) of >200.

11.
Clin Exp Ophthalmol ; 50(4): 398-406, 2022 05.
Article in English | MEDLINE | ID: covidwho-1714157

ABSTRACT

BACKGROUND: We investigated the ocular surface disturbances in COVID-19 patients discharged from the hospital. METHODS: One hundred and seventy-nine eyes of 109 healthy participants and 456 eyes of 228 post-COVID-19 patients received comprehensive eye examinations; the latter were interviewed with questionnaires on ocular symptoms before and after COVID-19 diagnosis. Associations of ocular surface manifestations with virological and ophthalmic parameters were evaluated by multivariable mixed linear or logistic regression models. RESULTS: Mean interval between COVID-19 diagnosis and ophthalmic evaluation was 52.23 ± 16.12 days. The severity of meibomian gland dysfunction (MGD) based on clinical staging was higher in post-COVID-19 than healthy eyes (1.14 ± 0.67 vs. 0.92 ± 0.68, p = 0.002) and so was ocular surface staining score (0.60 ± 0.69 vs. 0.49 ± 0.68, p = 0.044). Patients requiring supplementary oxygen during hospitalisation had shorter tear break-up time (ß -1.63, 95% CI -2.61 to -0.65). Cycle threshold (Ct) value from upper respiratory samples (inversely correlated with viral load) at diagnosis had an OR = 0.91 (95% CI 0.84-0.98) with new ocular surface symptoms 4 weeks after diagnosis. The presence of ocular surface symptoms 1 week prior to COVID-19 diagnosis showed an OR of 20.89 (95% CI 6.35-68.66) of persistent or new ocular symptoms 4 weeks afterward. CONCLUSIONS: MGD and ocular surface staining are more common and severe in post-COVID-19 patients. Patients with higher viral loads have greater risks of ocular surface symptoms. Patients requiring supplementary oxygen are more likely to show tear film instability. Ocular surface evaluation should be considered 1-3 months following hospital discharge for any COVID-19 patient.


Subject(s)
COVID-19 , Dry Eye Syndromes , Eyelid Diseases , Meibomian Gland Dysfunction , COVID-19/epidemiology , COVID-19 Testing , Dry Eye Syndromes/diagnosis , Humans , Meibomian Glands , Oxygen , Tears
12.
J Gastroenterol Hepatol ; 37(5): 823-831, 2022 May.
Article in English | MEDLINE | ID: covidwho-1685355

ABSTRACT

BACKGROUND AND AIM: Gut dysbiosis is associated with immune dysfunction and severity of COVID-19. Whether targeting dysbiosis will improve outcomes of COVID-19 is unknown. This study aimed to assess the effects of a novel gut microbiota-derived synbiotic formula (SIM01) as an adjuvant therapy on immunological responses and changes in gut microbiota of hospitalized COVID-19 patients. METHODS: This was an open-label, proof-of-concept study. Consecutive COVID-19 patients admitted to an infectious disease referral center in Hong Kong were given a novel formula of Bifidobacteria strains, galactooligosaccharides, xylooligosaccharide, and resistant dextrin (SIM01). The latter was derived from metagenomic databases of COVID-19 patients and healthy population. COVID-19 patients who were admitted under another independent infectious disease team during the same period without receiving SIM01 acted as controls. All patients received standard treatments for COVID-19 according to the hospital protocol. We assessed antibody response, plasma proinflammatory markers, nasopharyngeal SARS-CoV-2 viral load, and fecal microbiota profile from admission up to week 5. RESULTS: Twenty-five consecutive COVID-19 patients received SIM01 for 28 days; 30 patients who did not receive the formula acted as controls. Significantly more patients receiving SIM01 than controls developed SARS-CoV-2 IgG antibody (88% vs 63.3%; P = 0.037) by Day 16. One (4%) and 8 patients (26.7%) in the SIM01 and control group, respectively, failed to develop positive IgG antibody upon discharge. At week 5, plasma levels of interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), macrophage colony-stimulating factor (M-CSF), tumor necrosis factor (TNF-α), and IL-1RA reduced significantly in the SIM01 but not in the control group. There was a significant negative correlation of nasopharyngeal SARS-CoV-2 viral load and SIM01 intervention. Metagenomic analysis showed that bacterial species in SIM01 formula were found in greater abundance leading to enrichment of commensal bacteria and suppression of opportunistic pathogens in COVID-19 patients by week 4 and week 5. CONCLUSIONS: This proof-of-concept study suggested that the use of a novel gut microbiota-derived synbiotic formula, SIM01, hastened antibody formation against SARS-CoV-2, reduced nasopharyngeal viral load, reduced pro-inflammatory immune markers, and restored gut dysbiosis in hospitalised COVID-19 patients.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Synbiotics , Bacteria , COVID-19/therapy , Dysbiosis , Humans , Immunoglobulin G , Pilot Projects , SARS-CoV-2
13.
PLoS One ; 16(12): e0261778, 2021.
Article in English | MEDLINE | ID: covidwho-1613357

ABSTRACT

Many CRISPR/Cas platforms have been established for the detection of SARS-CoV-2. But the detection platform of the variants of SARS-CoV-2 is scarce because its specificity is very challenging to achieve for those with only one or a few nucleotide(s) differences. Here, we report for the first time that chimeric crRNA could be critical in enhancing the specificity of CRISPR-Cas12a detecting of N501Y, which is shared by Alpha, Beta, Gamma, and Mu variants of SARS-CoV-2 without compromising its sensitivity. This strategy could also be applied to detect other SARS-CoV-2 variants that differ only one or a few nucleotide(s) differences.


Subject(s)
COVID-19/diagnosis , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics , COVID-19/genetics , CRISPR-Cas Systems/genetics , DNA Primers/genetics , Diagnostic Tests, Routine/methods , Humans , Mutation/genetics , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Sensitivity and Specificity
14.
Public Health Genomics ; : 1-4, 2022 Jan 05.
Article in English | MEDLINE | ID: covidwho-1606251

ABSTRACT

During coronavirus disease 2019 (COVID-19) pandemic, the genetic mutations of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurred frequently. Some mutations in the spike protein are considered to promote transmissibility of the virus, while the mutation patterns in other proteins are less studied and may also be important in understanding the characteristics of SARS-CoV-2. We used the sequencing data of SARS-CoV-2 strains in California to investigate the time-varying patterns of the evolutionary genetic distance. The accumulative genetic distances were quantified across different time periods and in different viral proteins. The increasing trends of genetic distance were observed in spike protein (S protein), the RNA-dependent RNA polymerase (RdRp) region and nonstructural protein 3 (nsp3) of open reading frame 1 (ORF1), and nucleocapsid protein (N protein). The genetic distances in ORF3a, ORF8, and nsp2 of ORF1 started to diverge from their original variants after September 2020. By contrast, mutations in other proteins appeared transiently, and no evident increasing trend was observed in the genetic distance to the original variants. This study presents distinct patterns of the SARS-CoV-2 mutations across multiple proteins from the aspect of genetic distance. Future investigation shall be conducted to study the effects of accumulative mutations on epidemics characteristics.

15.
Front Immunol ; 12: 763292, 2021.
Article in English | MEDLINE | ID: covidwho-1581338

ABSTRACT

The cytokine release syndrome has been proposed as the driver of inflammation in coronavirus disease 2019 (COVID-19). However, studies on longitudinal cytokine profiles in patients across the whole severity spectrum of COVID-19 are lacking. In this prospective observational study on adult COVID-19 patients admitted to two Hong Kong public hospitals, cytokine profiling was performed on blood samples taken during early phase (within 7 days of symptom onset) and late phase (8 to 12 days of symptom onset). The primary objective was to evaluate the difference in early and late cytokine profiles among patient groups with different disease severity. The secondary objective was to assess the associations between cytokines and clinical endpoints in critically ill patients. A total of 40 adult patients (mild = 8, moderate = 15, severe/critical = 17) hospitalized with COVID-19 were included in this study. We found 22 cytokines which were correlated with disease severity, as proinflammatory Th1-related cytokines (interleukin (IL)-18, interferon-induced protein-10 (IP-10), monokine-induced by gamma interferon (MIG), and IL-10) and ARDS-associated cytokines (IL-6, monocyte chemoattractant protein-1 (MCP-1), interleukin-1 receptor antagonist (IL-1RA), and IL-8) were progressively elevated with increasing disease severity. Furthermore, 11 cytokines were consistently different in both early and late phases, including seven (growth-regulated oncogene-alpha (GRO-α), IL-1RA, IL-6, IL-8, IL-10, IP-10, and MIG) that increased and four (FGF-2, IL-5, macrophage-derived chemokine (MDC), and MIP-1α) that decreased from mild to severe/critical patients. IL-8, followed by IP-10 and MDC were the best performing early biomarkers to predict disease severity. Among critically ill patients, MCP-1 predicted the duration of mechanical ventilation, highest norepinephrine dose administered, and length of intensive care stay.


Subject(s)
Biomarkers/blood , COVID-19/immunology , Cytokines/blood , Adult , Aged , COVID-19/blood , Cytokines/immunology , Female , Hong Kong , Humans , Male , Middle Aged , Prospective Studies , SARS-CoV-2 , Severity of Illness Index
16.
Infect Genet Evol ; 97: 105162, 2022 01.
Article in English | MEDLINE | ID: covidwho-1540856

ABSTRACT

The circulation of SARS-CoV-2 Delta (i.e., B.1.617.2) variants challenges the pandemic control. Our analysis showed that in the United Kingdom (UK), the reported case fatality ratio (CFR) decreased from May to July 2021 for non-Delta variant, whereas the decreasing trends of the CFR of Delta variant appeared weak and insignificant. The association between vaccine coverage and CFR might be stratified by different circulating variants. Due to the limitation of ecological study design, the interpretation of our results should be treated with caution.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/pathogenicity , Vaccination Coverage/statistics & numerical data , COVID-19/mortality , COVID-19/transmission , Epidemiological Monitoring , Humans , Mortality/trends , SARS-CoV-2/growth & development , SARS-CoV-2/immunology , Time Factors , United Kingdom/epidemiology
17.
JAMA Netw Open ; 4(11): e2132923, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1516695

ABSTRACT

Importance: Seroprevalence studies inform the extent of infection and assist evaluation of mitigation strategies for the COVID-19 pandemic. Objective: To estimate the prevalence of unidentified SARS-CoV-2 infection in the general population of Hong Kong. Design, Setting, and Participants: A prospective cross-sectional study was conducted in Hong Kong after each major wave of the COVID-19 pandemic (April 21 to July 7, 2020; September 29 to November 23, 2020; and January 15 to April 18, 2021). Adults (age ≥18 years) who had not been diagnosed with COVID-19 were recruited during each period, and their sociodemographic information, symptoms, travel, contact, quarantine, and COVID-19 testing history were collected. Main Outcomes and Measures: The main outcome was prevalence of SARS-CoV-2 infection. SARS-CoV-2 IgG antibodies were detected by an enzyme-linked immunosorbent assay based on spike (S1/S2) protein, followed by confirmation with a commercial electrochemiluminescence immunoassay based on the receptor binding domain of spike protein. Results: The study enrolled 4198 participants (2539 [60%] female; median age, 50 years [IQR, 25 years]), including 903 (22%), 1046 (25%), and 2249 (53%) during April 21 to July 7, 2020; during September 29 to November 23, 2020; and during January 15 to April 18, 2021, respectively. The numbers of participants aged 18 to 39 years, 40 to 59 years, and 60 years or older were 1328 (32%), 1645 (39%), and 1225 (29%), respectively. Among the participants, 2444 (58%) stayed in Hong Kong since November 2019 and 2094 (50%) had negative SARS-CoV-2 RNA test results. Only 170 (4%) reported ever having contact with individuals with confirmed cases, and 5% had been isolated or quarantined. Most (2803 [67%]) did not recall any illnesses, whereas 737 (18%), 212 (5%), and 385 (9%) had experienced respiratory symptoms, gastrointestinal symptoms, or both, respectively, before testing. Six participants were confirmed to be positive for anti-SARS-CoV-2 IgG; the adjusted prevalence of unidentified infection was 0.15% (95% CI, 0.06%-0.32%). Extrapolating these findings to the whole population, there were fewer than 1.9 unidentified infections for every recorded confirmed case. The overall prevalence of SARS-CoV-2 infection in Hong Kong before the roll out of vaccination was less than 0.45%. Conclusions and Relevance: In this cross-sectional study of participants from the general public in Hong Kong, the prevalence of unidentified SARS-CoV-2 infection was low after 3 major waves of the pandemic, suggesting the success of the pandemic mitigation by stringent isolation and quarantine policies even without complete city lockdown. More than 99.5% of the general population of Hong Kong remain naive to SARS-CoV-2, highlighting the urgent need to achieve high vaccine coverage.


Subject(s)
COVID-19 Testing , COVID-19/epidemiology , Pandemics , Population Health , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , COVID-19/diagnosis , COVID-19/virology , Communicable Disease Control , Cross-Sectional Studies , Female , Hong Kong , Humans , Immunoglobulin G/blood , Male , Middle Aged , Population Surveillance , Prevalence , Prospective Studies , RNA, Viral , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Seroepidemiologic Studies , Young Adult
18.
Vaccines (Basel) ; 9(11)2021 Oct 28.
Article in English | MEDLINE | ID: covidwho-1488803

ABSTRACT

BACKGROUND: Vaccine hesitancy represents one of the major global health issues around the world. We examined the perception, attitude, perceived barriers and facilitation measures of receiving the COVID-19 vaccine in a Chinese population with free vaccine choices (Sinovac [Coronavac] vs. BioNTech/Fosun [Comirnaty]) and adequate doses. METHOD: We conducted a random telephone survey of the general population in 1195 subjects aged 18 years or above from 23 April 2021 to 8 May 2021 after two months of vaccine rollout. A descriptive analysis of the levels of enabling factors, obstacles and perception of COVID-19 vaccination was conducted using ANOVA and Chi-square tests for trend. RESULTS: Only 10.1% and 13.5% had received one and two COVID-19 vaccine doses, respectively. Among those who had not received any COVID-19 vaccine (75.4%), only 25.1% expressed their intention to receive in the coming 6 months. The barriers with the highest scores included "having heard of cases with serious adverse events or death after vaccination" (score: 8.17 out 10, 95% C.I. 7.99, 8.35), "lack of confidence on governmental recommendations" (7.69, 95% C.I. 7.47, 7.91), and "waiting for a better vaccine" (7.29, 95% C.I. 7.07, 7.52). The highest score for the impact of various incentives for vaccination was for "vaccine passports for overseas travel" (4.44, 95% C.I. 4.18, 4.71). CONCLUSIONS: Vaccine hesitancy is commonly observed in this Chinese population despite adequate provision of vaccine doses and choices. No single incentive is strong enough to promote vaccination, and multiple facilitation measures for different groups of population are needed to encourage vaccine uptake. Active clarification and promotion by medical professionals together with a variety of incentives are needed to drive vaccine uptake.

19.
Gastroenterology ; 162(2): 548-561.e4, 2022 02.
Article in English | MEDLINE | ID: covidwho-1475507

ABSTRACT

BACKGROUND AND AIMS: Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with altered gut microbiota composition. Phylogenetic groups of gut bacteria involved in the metabolism of short chain fatty acids (SCFAs) were depleted in SARS-CoV-2-infected patients. We aimed to characterize a functional profile of the gut microbiome in patients with COVID-19 before and after disease resolution. METHODS: We performed shotgun metagenomic sequencing on fecal samples from 66 antibiotics-naïve patients with COVID-19 and 70 non-COVID-19 controls. Serial fecal samples were collected (at up to 6 times points) during hospitalization and beyond 1 month after discharge. We assessed gut microbial pathways in association with disease severity and blood inflammatory markers. We also determined changes of microbial functions in fecal samples before and after disease resolution and validated these functions using targeted analysis of fecal metabolites. RESULTS: Compared with non-COVID-19 controls, patients with COVID-19 with severe/critical illness showed significant alterations in gut microbiome functionality (P < .001), characterized by impaired capacity of gut microbiome for SCFA and L-isoleucine biosynthesis and enhanced capacity for urea production. Impaired SCFA and L-isoleucine biosynthesis in gut microbiome persisted beyond 30 days after recovery in patients with COVID-19. Targeted analysis of fecal metabolites showed significantly lower fecal concentrations of SCFAs and L-isoleucine in patients with COVID-19 before and after disease resolution. Lack of SCFA and L-isoleucine biosynthesis significantly correlated with disease severity and increased plasma concentrations of CXCL-10, NT- proB-type natriuretic peptide, and C-reactive protein (all P < .05). CONCLUSIONS: Gut microbiome of patients with COVID-19 displayed impaired capacity for SCFA and L-isoleucine biosynthesis that persisted even after disease resolution. These 2 microbial functions correlated with host immune response underscoring the importance of gut microbial functions in SARS-CoV-2 infection pathogenesis and outcome.


Subject(s)
COVID-19/microbiology , Fatty Acids, Volatile/biosynthesis , Gastrointestinal Microbiome/genetics , Immunity/physiology , Isoleucine/biosynthesis , Adult , Biomarkers/blood , Case-Control Studies , Feces/microbiology , Female , Humans , Male , Metagenomics , Middle Aged , Phylogeny , SARS-CoV-2 , Severity of Illness Index
20.
BMC Infect Dis ; 21(1): 1039, 2021 Oct 07.
Article in English | MEDLINE | ID: covidwho-1455943

ABSTRACT

BACKGROUND: The COVID-19 pandemic poses serious threats to global health, and the emerging mutation in SARS-CoV-2 genomes, e.g., the D614G substitution, is one of the major challenges of disease control. Characterizing the role of the mutation activities is of importance to understand how the evolution of pathogen shapes the epidemiological outcomes at population scale. METHODS: We developed a statistical framework to reconstruct variant-specific reproduction numbers and estimate transmission advantage associated with the mutation activities marked by single substitution empirically. Using likelihood-based approach, the model is exemplified with the COVID-19 surveillance data from January 1 to June 30, 2020 in California, USA. We explore the potential of this framework to generate early warning signals for detecting transmission advantage on a real-time basis. RESULTS: The modelling framework in this study links together the mutation activity at molecular scale and COVID-19 transmissibility at population scale. We find a significant transmission advantage of COVID-19 associated with the D614G substitution, which increases the infectivity by 54% (95%CI: 36, 72). For the early alarming potentials, the analytical framework is demonstrated to detect this transmission advantage, before the mutation reaches dominance, on a real-time basis. CONCLUSIONS: We reported an evidence of transmission advantage associated with D614G substitution, and highlighted the real-time estimating potentials of modelling framework.


Subject(s)
COVID-19 , Genome, Viral , SARS-CoV-2 , COVID-19/virology , Humans , Likelihood Functions , Mutation , Pandemics , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL